Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter D.W. Boyd* and John D. Paauwe

Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail:
pdw.boyd@auckland.ac.nz

Key indicators

Single-crystal X-ray study
$T=85 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.019$
$w R$ factor $=0.047$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(4-Pyridylaminocarbonyl)ferrocene

Molecules of the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\right)\right]$, form (101) alternating sheets of the pyridylamide and ferrocene groups via amide to pyridine $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogenbonding interactions and cyclopentadienyl to pyridine C $\mathrm{H} \cdots \pi$ interactions.

Comment

The title molecule, (I), was first reported in photophysical studies of its coordination complex with fluorinated zinc porphyrins (Kashiwagi et al., 2003) and in studies of thirdorder nonlinear optical properties of structurally characterized zinc and mercury complexes (Li et al., 2003). More recently, the structure of a zinc porphyrin coordination complex has been reported (Boyd \& Hosseini, 2006).

(I)

The molecular structure of (I) is shown in Fig. 1. A ferrocene cyclopentadienyl ring and the pyridine amide groups are nearly coplanar [r.m.s. deviation $=0.098$ (3) \AA] , with a small tilting of the C1-C5 cyclopentadienyl plane [r.m.s. deviation $=$ 0.002 (1) \AA] with respect to the pyridine amide unit [r.m.s. deviation $=0.051(1) \AA$] of $7.8(1)^{\circ}$. The cyclopentadienyl rings have a near eclipsed arrangement within the ferrocene group, with values of the $\mathrm{C}-C g 1-C g 2-\mathrm{C}$ pseudo-torsion angles varying from 5.14 to $5.59^{\circ}(C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 6-\mathrm{C} 10$ rings, respectively). The $\mathrm{Fe} \cdots C g 1$ and $\mathrm{Fe} \cdots C g 2$ distances are 1.6508 (9) and 1.6551 (9) \AA, respectively, with a $C g 1 . F \mathrm{Fe} \cdots C g 2$ angle of $177.66(4)^{\circ}$. The bond lengths in (I) (Table 1) are similar to those found in zinc and mercury complexes (Li et al., 2003) and a zinc porphyrin complex (Boyd \& Hosseini, 2006).

The molecules assemble as chains in the crystal structure, along the a axis, formed by hydrogen-bonding interactions between the amide $\mathrm{N} 2-\mathrm{H}$ group and the pyridine N 1 atom $\left(\mathrm{N}-\mathrm{H} \cdots \mathrm{N}=2.266 \AA\right.$; symmetry code: $-\frac{1}{2}+x,-y,-z$). These chains stack along the ac plane and are held together by two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions from neighbouring ferrocene groups at $\left(\frac{1}{2}+x,-y, z\right)$ and $\left(\frac{3}{2}-x, y, \frac{1}{2}+z\right)$ to opposite faces of a pyridine ring $(\mathrm{C} 9-\mathrm{H} \cdots C g 3=2.91 \AA$ and $\mathrm{C} 8-\mathrm{H} \cdots C g 3=2.70 \AA ; C g 3$ is the centroid of the $\mathrm{N} 1 / \mathrm{C} 12-\mathrm{C} 16$ ring). This leads to the formation of alternating regions of pyridine amide and ferrocene groups in the crystal structure (Fig. 2).

Experimental

Compound (I) was prepared by reaction of ferrocene carbonyl chloride with 4 -aminopyridine in dichloromethane (Li et al., 2003; Kashiwagi et al., 2003). Crystals of (I) suitable for X-ray diffraction were grown from a slowly evaporating chloroform/hexane (1:1) solution of 4 -ferrocenamidopyridine.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\right)\right]$
$M_{r}=306.14$
Orthorhombic, $P c a 2_{1}$
$a=10.5859(1) \AA$
$b=12.6355(1) \AA$
$c=9.6041(1) \AA$
$V=1284.63(2) \AA^{3}$

Data collection

Siemens SMART CCD

 diffractometerω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.775, T_{\text {max }}=0.827$ $($ expected range $=0.815-0.869)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.047$
$S=1.07$
2581 reflections
181 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0225 P)^{2}\right. \\
& +0.372 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1188 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.023 \text { (12) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Fe} 1-\mathrm{C} 1$	$2.0504(18)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.428(3)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$2.0490(18)$	$\mathrm{C} 8-\mathrm{C} 7$	$1.425(3)$
$\mathrm{Fe} 1-\mathrm{C} 3$	$2.0515(18)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.425(3)$
$\mathrm{Fe} 1-\mathrm{C} 4$	$2.0520(14)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.426(2)$
$\mathrm{Fe} 1-\mathrm{C} 5$	$2.0498(17)$	$\mathrm{C} 10-\mathrm{C} 6$	$1.432(3)$
$\mathrm{Fe} 1-\mathrm{C} 6$	$2.0531(18)$	$\mathrm{C} 5-\mathrm{C} 11$	$1.484(2)$
$\mathrm{Fe} 1-\mathrm{C} 7$	$2.0579(18)$	$\mathrm{O} 1-\mathrm{C} 11$	$1.227(2)$
$\mathrm{Fe} 1-\mathrm{C} 8$	$2.0556(18)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.381(2)$
$\mathrm{Fe} 1-\mathrm{C} 9$	$2.0477(15)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.396(2)$
$\mathrm{Fe} 1-\mathrm{C} 10$	$2.0492(17)$	$\mathrm{C} 13-\mathrm{C} 12$	$1.404(2)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.427(2)$	$\mathrm{C} 14-\mathrm{C} 13$	$1.387(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.423(3)$	$\mathrm{C} 14-\mathrm{N} 1$	$1.350(2)$
$\mathrm{C} 4-\mathrm{C} 3$	$1.430(2)$	$\mathrm{N} 1-\mathrm{C} 15$	$1.342(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.436(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.392(3)$
$\mathrm{C} 5-\mathrm{C} 1$	$1.435(3)$	$\mathrm{C} 12-\mathrm{C} 16$	$1.400(2)$

H atoms were placed in calculated positions and refined using a riding model $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA)$, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Version 1.4.1; Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figure 1
Structure of (I) showing 50\% probability displacement ellipsoids for nonH atoms and H atoms as arbitrary spheres.

Figure 2

View of the crystal structure of (I) along [001], showing the formation of (101) alternating sheets of pyridylamide and ferrocene groups assembled from amide $\mathrm{N} 2-\mathrm{H}$ to pyridine N 1 hydrogen-bonding interactions and cyclopentadienyl $\mathrm{C} 8-\mathrm{H}$ and $\mathrm{C} 9-\mathrm{H}$ to pyridine $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. H atoms have been omitted.

This work was supported by the Marsden Fund of the Royal Society of New Zealand and The University of Auckland Research Committee. Thanks are alse expressed to Tanya Groutso for assistance with data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Boyd, P. D. W. \& Hosseini, A. (2006). Acta Cryst. E62, m1542-m1544.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

metal-organic papers

Kashiwagi, Y., Imahori, H., Araki, Y., Ito, O., Yamada, K., Sakata, Y. \& Fukuzumi, S. (2003). J. Phys. Chem. A, 107, 5515-5522.
Li, G., Song, Y., Hou, H., Li, L., Fan, Y., Zhu, Y., Meng, X. \& Mi, L. (2003). Inorg. Chem. 42, 913-920.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. Release 97-1. University of Göttingen, Germany.
Siemens (1995). SHELXTL (Version 5), SMART (Version 4.050) and SAINT (Version 4.050). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

